

高铁还原酶(FCR)活性测定试剂盒(微板法)

产品货号: BA2654

产品规格:96样

产品简介:

高铁还原酶(Ferric reductase, FCR)催化高铁螯合物中的Fe³⁺还原为Fe²⁺,在部分物种铁元素的吸收中有重要作用。

高铁还原酶(FCR)可以催化 Fe^{3+} 还原为 Fe^{2+} , Fe^{2+} 再与亚铁嗪(ferrozine)生成紫红色化合物,该有色物质在562nm 处有特征吸收峰,通过测定在562nm下的增加速率即可得出该酶活大小。

产品内容:

HI THE			
产品名称	规格	保存条件	备注
提取液	液体100mL×1瓶	2-8°C	
试剂一	粉剂×2支	2-8°C	用前甩几下或离心使粉剂落入底部,分别加0.55mL蒸馏水溶解备用。用不完的试剂分装后-20℃保存,禁止反复冻融,三天内用完。
试剂二	液体×1支	2-8°C	
试剂三	粉剂×1支	2-8°C	临用前甩几下使粉剂落入底部,再加 1.2mL蒸馏水溶解备用。
试剂四	液体13mL×1瓶	2-8°C	
试剂五	液体×1支	2-8°C	
标准品	液体1mL×1支	2-8°C	

所需的仪器和用品:

酶标仪、96孔板、水浴锅或恒温培养箱、可调式移液器、低温离心机、蒸馏水。

高铁还原酶 (FCR) 活性测定:

建议正式实验前选取2个样本做预测定,了解本批样品情况,熟悉实验流程,避免实验样本和试剂浪费!

- 1. 样本制备:
- ① 组织样本:

取约 0.1g 组织,加入 1mL 提取液,进行冰浴匀浆。 $4^{\circ}C \times 12000$ rpm 离心 5min,取上清,置冰上待测。 【注】:若增加样本量,可按照组织质量(g):提取液体积(mL)为 $1:5 \sim 10$ 的比例进行提取。

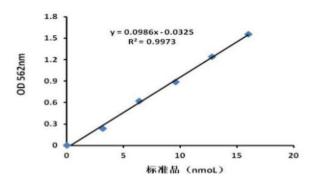
② 细菌/细胞样本:

先收集细菌或细胞到离心管内,离心后弃上清;取约 500 万细菌或细胞加入 1mL 提取液,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间隔 10s,重复 30 次); 12000rpm 4°C 离心 10min,取上清,置冰上待测。

【注】: 若增加样本量,可按照细菌/细胞数量(10°):提取液(mL)为500~1000:1的比例进行提取。

- ③ 液体样本:澄清的液体可直接检测;若浑浊则离心后取上清液检测。
- 2. 上机检测:
- ① 酶标仪预热 30min,设定波长到 562nm。
- ② 所有试剂解冻至室温(25℃), 在 96 孔板中依次加入:

试剂名称(μL)	测定管
样本	40
试剂一	10
试剂二	10
试剂三	10
试剂四	120



试剂五	10			
充分混匀,于波长 562nm 处读取吸光值 A1,室温(25℃)				
孵育 30min 后读取 A2, ΔA=A2-A1。				

【注】: 若 ΔA 的值在零附近,可增加样本加样体积 V1(如增至 80 μ L,则试剂四相应减少); 或延长反应时间 T(如增至 60min); 或增加样本取样质量 W; 则改变后的 V1、T 和 W 需代入计算公式重新计算。 结果计算:

1. 标准曲线方程: y=0.0986x-0.0325, x是标准品摩尔质量(nmoL), y是ΔA。

2. 按样本鲜重计算:

单位定义:每克组织每分钟催化生成1nmoLFe²⁺定义为一个酶活单位(U)。

FCR (nmoL/min/g 鲜重)=[(ΔA+0.0325)÷0.0986]÷(W×V1÷V)÷T=8.5×(ΔA+0.0325)÷W

3. 按样本蛋白浓度计算:

单位定义: 每毫克组织蛋白每分钟催化生成1nmoLFe²⁺定义为一个酶活单位(U)。

 $FCR \; (nmoL/min/mg \; prot) = [(\Delta A + 0.0325) \div 0.0986] \div (V1 \times Cpr) \div T = 8.5 \times (\Delta A + 0.0325) \div Cpr$

4. 按细胞数量计算:

单位定义:每10⁴个细胞每分钟催化生成1nmoL Fe2+定义为一个酶活单位(U)。

 $FCR(nmoL/min/10^4cell) = [(\Delta A + 0.0325) \div 0.0986 \div (500 \times V1 \div V) \div T = 8.5 \times (\Delta A + 0.0325) \div 500]$

5. 按照液体体积计算:

单位定义:每毫升液体每分钟催化生成1nmoL Fe²⁺定义为一个酶活单位(U)。

FCR $(nmoL/min/mL) = [(\Delta A + 0.0325) \div 0.0986] \div V1 \div T = 8.5 \times (\Delta A + 0.0325) \div Cpr$

V---加入提取液体积, 1mL; V1---加入样本体积, 0.04mL; T---反应时间, 30min; W---样本质量, g; 500---细菌/细胞数量, 万; Cpr---样本蛋白质浓度, mg/mL, 建议使用本公司的BCA蛋白含量检测试剂盒。

附:标准曲线制作过程:

- 1. 标准品母液(15μmoL/mL): 把母液用蒸馏水稀释成以下浓度: 0,0.08,0.16,0.24,0.32,0.4μmoL/mL。也可根据实际来调整浓度。
- 2. 40μL标准品+10μL试剂三+150μL试剂四,混匀,室温静置5min后于562nm处读取吸光值A,依据结果即可制作标准曲线。

